中文字幕第五页-中文字幕第页-中文字幕韩国-中文字幕最新-国产尤物二区三区在线观看-国产尤物福利视频一区二区

怎么在python中實現SVM線性分類模型-創新互聯

怎么在python中實現SVM 線性分類模型?很多新手對此不是很清楚,為了幫助大家解決這個難題,下面小編將為大家詳細講解,有這方面需求的人可以來學習下,希望你能有所收獲。

創新互聯建站專注于企業營銷型網站建設、網站重做改版、鄰水網站定制設計、自適應品牌網站建設、HTML5建站商城網站建設、集團公司官網建設、外貿營銷網站建設、高端網站制作、響應式網頁設計等建站業務,價格優惠性價比高,為鄰水等各大城市提供網站開發制作服務。

導入對應的包和數據

import matplotlib.pyplot as plt
import numpy as np
from sklearn import datasets,linear_model,cross_validation,svm
def load_data_regression():
  diabetes = datasets.load_diabetes()
  return cross_validation.train_test_split(diabetes,diabetes.target,test_size=0.25,random_state=0)
def load_data_classfication():
  iris = datasets.load_iris()
  X_train = iris.data
  y_train = iris.target
  return cross_validation.train_test_split(X_train,y_train,test_size=0.25,random_state=0,stratify=y_train)
#線性分類SVM
def test_LinearSVC(*data):
  X_train,X_test,y_train,y_test = data
  cls = svm.LinearSVC()
  cls.fit(X_train,y_train)
  print('Coefficients:%s,intercept%s'%(cls.coef_,cls.intercept_))
  print('Score:%.2f'%cls.score(X_test,y_test))
X_train,X_test,y_train,y_test = load_data_classfication()
test_LinearSVC(X_train,X_test,y_train,y_test)
def test_LinearSVC_loss(*data):
  X_train,X_test,y_train,y_test = data
  losses = ['hinge','squared_hinge']
  for loss in losses:
    cls = svm.LinearSVC(loss=loss)
    cls.fit(X_train,y_train)
    print('loss:%s'%loss)
    print('Coefficients:%s,intercept%s'%(cls.coef_,cls.intercept_))
    print('Score:%.2f'%cls.score(X_test,y_test))
X_train,X_test,y_train,y_test = load_data_classfication()
test_LinearSVC_loss(X_train,X_test,y_train,y_test)
#考察罰項形式的影響
def test_LinearSVC_L12(*data):
  X_train,X_test,y_train,y_test = data
  L12 = ['l1','l2']
  for p in L12:
    cls = svm.LinearSVC(penalty=p,dual=False)
    cls.fit(X_train,y_train)
    print('penalty:%s'%p)
    print('Coefficients:%s,intercept%s'%(cls.coef_,cls.intercept_))
    print('Score:%.2f'%cls.score(X_test,y_test))
X_train,X_test,y_train,y_test = load_data_classfication()
test_LinearSVC_L12(X_train,X_test,y_train,y_test)
#考察罰項系數C的影響
def test_LinearSVC_C(*data):
  X_train,X_test,y_train,y_test = data
  Cs = np.logspace(-2,1)
  train_scores = []
  test_scores = []
  for C in Cs:
    cls = svm.LinearSVC(C=C)
    cls.fit(X_train,y_train)
    train_scores.append(cls.score(X_train,y_train))
    test_scores.append(cls.score(X_test,y_test))
  fig = plt.figure()
  ax = fig.add_subplot(1,1,1)
  ax.plot(Cs,train_scores,label = 'Training score')
  ax.plot(Cs,test_scores,label = 'Testing score')
  ax.set_xlabel(r'C')
  ax.set_xscale('log')
  ax.set_ylabel(r'score')
  ax.set_title('LinearSVC')
  ax.legend(loc='best')
  plt.show()
X_train,X_test,y_train,y_test = load_data_classfication()
test_LinearSVC_C(X_train,X_test,y_train,y_test)

怎么在python中實現SVM 線性分類模型

#非線性分類SVM
#線性核
def test_SVC_linear(*data):
  X_train, X_test, y_train, y_test = data
  cls = svm.SVC(kernel='linear')
  cls.fit(X_train,y_train)
  print('Coefficients:%s,intercept%s'%(cls.coef_,cls.intercept_))
  print('Score:%.2f'%cls.score(X_test,y_test))
X_train,X_test,y_train,y_test = load_data_classfication()
test_SVC_linear(X_train,X_test,y_train,y_test)

怎么在python中實現SVM 線性分類模型

#考察高斯核
def test_SVC_rbf(*data):
  X_train, X_test, y_train, y_test = data
  ###測試gamm###
  gamms = range(1, 20)
  train_scores = []
  test_scores = []
  for gamm in gamms:
    cls = svm.SVC(kernel='rbf', gamma=gamm)
    cls.fit(X_train, y_train)
    train_scores.append(cls.score(X_train, y_train))
    test_scores.append(cls.score(X_test, y_test))
  fig = plt.figure()
  ax = fig.add_subplot(1, 1, 1)
  ax.plot(gamms, train_scores, label='Training score', marker='+')
  ax.plot(gamms, test_scores, label='Testing score', marker='o')
  ax.set_xlabel(r'$\gamma$')
  ax.set_ylabel(r'score')
  ax.set_ylim(0, 1.05)
  ax.set_title('SVC_rbf')
  ax.legend(loc='best')
  plt.show()
X_train,X_test,y_train,y_test = load_data_classfication()
test_SVC_rbf(X_train,X_test,y_train,y_test)

怎么在python中實現SVM 線性分類模型

#考察sigmoid核
def test_SVC_sigmod(*data):
  X_train, X_test, y_train, y_test = data
  fig = plt.figure()
  ###測試gamm###
  gamms = np.logspace(-2, 1)
  train_scores = []
  test_scores = []
  for gamm in gamms:
    cls = svm.SVC(kernel='sigmoid',gamma=gamm,coef0=0)
    cls.fit(X_train, y_train)
    train_scores.append(cls.score(X_train, y_train))
    test_scores.append(cls.score(X_test, y_test))
  ax = fig.add_subplot(1, 2, 1)
  ax.plot(gamms, train_scores, label='Training score', marker='+')
  ax.plot(gamms, test_scores, label='Testing score', marker='o')
  ax.set_xlabel(r'$\gamma$')
  ax.set_ylabel(r'score')
  ax.set_xscale('log')
  ax.set_ylim(0, 1.05)
  ax.set_title('SVC_sigmoid_gamm')
  ax.legend(loc='best')

  #測試r
  rs = np.linspace(0,5)
  train_scores = []
  test_scores = []
  for r in rs:
    cls = svm.SVC(kernel='sigmoid', gamma=0.01, coef0=r)
    cls.fit(X_train, y_train)
    train_scores.append(cls.score(X_train, y_train))
    test_scores.append(cls.score(X_test, y_test))
  ax = fig.add_subplot(1, 2, 2)
  ax.plot(rs, train_scores, label='Training score', marker='+')
  ax.plot(rs, test_scores, label='Testing score', marker='o')
  ax.set_xlabel(r'r')
  ax.set_ylabel(r'score')
  ax.set_ylim(0, 1.05)
  ax.set_title('SVC_sigmoid_r')
  ax.legend(loc='best')
  plt.show()
X_train,X_test,y_train,y_test = load_data_classfication()
test_SVC_sigmod(X_train,X_test,y_train,y_test)

怎么在python中實現SVM 線性分類模型

看完上述內容是否對您有幫助呢?如果還想對相關知識有進一步的了解或閱讀更多相關文章,請關注創新互聯行業資訊頻道,感謝您對創新互聯的支持。

本文名稱:怎么在python中實現SVM線性分類模型-創新互聯
網頁路徑:http://www.2m8n56k.cn/article4/dodjie.html

成都網站建設公司_創新互聯,為您提供企業網站制作商城網站動態網站響應式網站面包屑導航網頁設計公司

廣告

聲明:本網站發布的內容(圖片、視頻和文字)以用戶投稿、用戶轉載內容為主,如果涉及侵權請盡快告知,我們將會在第一時間刪除。文章觀點不代表本網站立場,如需處理請聯系客服。電話:028-86922220;郵箱:[email protected]。內容未經允許不得轉載,或轉載時需注明來源: 創新互聯

h5響應式網站建設
主站蜘蛛池模板: 男女午夜性爽快免费视频不卡 | 中文字幕乱码中文乱码综合 | 久久男人的天堂色偷偷 | 日本在线视频不卡 | 国产天堂 | 美女一丝不佳一级毛片香蕉 | 精品在线免费观看 | 久久国产香蕉 | 在线a亚洲视频播放在线观看 | 深夜福利视频在线观看免费视频 | 国产精品亚洲玖玖玖在线靠爱 | 青青草国产一区二区三区 | 国产成人毛片精品不卡在线 | 欧美一级日韩在线观看 | 性欧美video另类bd | 精品韩国主播福利视频在线观看一 | 免费五级在线观看日本片 | 亚洲国产欧美一区二区欧美 | 欧美成人精品在线 | 成人亚洲国产精品久久 | 男女无遮掩做爰免费视频软件 | 国产的一级毛片完整 | 精品亚洲永久免费精品 | 亚洲欧美一级视频 | 九九久久精品这里久久网 | 成人一区二区免费中文字幕 | 日韩精品久久久毛片一区二区 | 欧美成人极品怡红院tv | 国产小说 | 成人性一级视频在线观看 | 亚洲成在线| 欧美激情亚洲色图 | 久久精品视频免费观看 | 美女的让男人桶到爽软件 | 一色屋精品亚洲香蕉网站 | 一级一级一片在线观看 | 亚洲九九视频 | 亚洲国产大片 | 国产在线激情视频 | 亚洲精品午夜在线观看 | 男人女人做刺激视频免费 |