二叉查找樹(Binary Search Tree),也稱有序二叉樹(ordered binary tree),排序二叉樹(sorted binary tree),是指一顆空樹或者具有下列性質的二叉樹:
創(chuàng)新互聯(lián)專注于桑日網站建設服務及定制,我們擁有豐富的企業(yè)做網站經驗。 熱誠為您提供桑日營銷型網站建設,桑日網站制作、桑日網頁設計、桑日網站官網定制、微信小程序定制開發(fā)服務,打造桑日網絡公司原創(chuàng)品牌,更為您提供桑日網站排名全網營銷落地服務。
(1)每個節(jié)點都有一個作為搜索依據的關鍵碼(key),所有的節(jié)點的關鍵碼互不相同。
(2)左子樹上所有的關鍵碼(key)都小于根節(jié)點點的關鍵碼(key)。
(3)右子樹上所有的關鍵碼(key)都大于根節(jié)點的關鍵碼(key)。
(4)左右子樹都是二叉搜索樹。
代碼實現(xiàn)如下:
#include<iostream> using namespace std; template<class K,class V> struct BSTreeNode{ BSTreeNode<K, V>* _left; BSTreeNode<K, V>* _right; K _key; V _value; BSTreeNode(const K& key,const V& value) :_key(key) , _value(value) , _left(NULL) , _right(NULL) {} }; template<class K,class V> class BSTree{ typedef BSTreeNode<K, V> Node; public: BSTree() :_root(NULL) {} //非遞歸 bool Insert(const K& key, const V& value) { if (_root == NULL) { _root = new Node(key,value); return true; } Node* parent = _root; Node* cur = _root; while (cur) { if (cur->_key > key) { parent = cur; cur = cur->_left; } else if (cur->_key < key) { parent = cur; cur = cur->_right; } else { return false; } } if (parent->_key>key) { parent->_left = new Node(key,value); } else { parent->_right = new Node(key, value); } return true; } void InOrder() { _InOrder(_root); cout << endl; } Node* Find(const K& key) { if (_root == NULL) { return NULL; } Node* cur = _root; while (cur) { if (cur->_key > key) { cur = cur->_left; } else if (cur->_key < key) { cur = cur->_right; } else { return cur; } } return NULL; } bool Remove(const K& key) { if (_root == NULL) { return false; } Node* parent = NULL; Node* cur = _root; while (cur) { if (cur->_key > key) { parent = cur; cur = cur->_left; } else if (cur->_key < key) { parent = cur; cur = cur->_right; } else break; } if (cur == NULL) return false; Node* del; //刪除節(jié)點的左為空 if (cur->_left == NULL) { del = cur; if (parent == NULL) { _root = cur->_right; } else { if (parent->_left == cur) { parent->_left = cur->_right; } else { parent->_right = cur->_right; } } delete del; } //刪除節(jié)點的右為空 else if (cur->_right == NULL) { del = cur; if (parent == NULL) { _root = cur->_left; } else { if (parent->_left == cur) { parent->_left = cur->_left; } else { parent->_right = cur->_left; } } delete del; } //刪除節(jié)點的左右都不為空 else { //找右樹的最左節(jié)點,也就是右邊最小的數 parent = cur; Node* left = cur->_right; while (left->_left) { parent = left; left = left->_left; } del = left; cur->_key = left->_key; cur->_value = left->_value; if (parent->_left == left) { parent->_left = left->_right; } else { parent->_right = left->_right; } delete del; } return true; } //遞歸 Node* FindR(const K& key) { return _FindR(_root,key); } bool InsertR(const K& key, const V& value) { return _InsertR(_root,key,value); } bool RemoveR(const K& key) { return _RemoveR(_root,key); } protected: void _InOrder(Node* root) { if (root != NULL) { _InOrder(root->_left); cout << root->_key << " "; _InOrder(root->_right); } } Node* _FindR(Node* root,const K& key) { if (root == NULL) { return NULL; } if (root->_key == key) { return root; } if (root->_key > key) { return _FindR(root->_left,key); } else { return _FindR(root->_right,key); } return NULL; } bool _InsertR(Node*& root, const K& key, const V& value) { if (root == NULL) { root = new Node(key,value); return true; } if (root->_key > key) { return _InsertR(root->_left,key,value); } else { return _InsertR(root->_right,key,value); } return false; } bool _RemoveR(Node*& root, const K& key) { if (root == NULL) { return false; } if (root->_key > key) { return _RemoveR(root->_left,key); } else if (root->_key < key) { return _RemoveR(root->_right,key); } else { //刪除的節(jié)點的左為空 if (root->_left == NULL) { root = root->_right; } //刪除節(jié)點的右為空 else if (root->_right == NULL) { root = root->_left; } else { //找右邊最左的節(jié)點(即右邊最小的節(jié)點)替換刪除的該節(jié)點(下面程序采用的)。 //或者找左邊最右的節(jié)點(即左邊最大的節(jié)點)替換刪除的該節(jié)點 Node* parent = root; Node* left = root->_right; while (left->_left) { parent = left; left = left->_left; } root->_key = left->_key; root->_value = left->_value; if (parent->_left == left) { parent->_left = left->_right; } else { parent->_right = left->_right; } } return true; } return false; } protected: Node* _root; }; #include "BSTree.h" void Test1() { int arr[10] = { 0, 1, 3, 5, 4, 2, 7, 8, 6, 9}; BSTree<int, int> bst; for (int i = 0; i < sizeof(arr) / sizeof(arr[0]); ++i) { bst.Insert(arr[i],i); } bst.InOrder(); BSTreeNode<int, int>* ret1=bst.Find(8); if (ret1) { cout << ret1->_key << ":" << ret1->_value << endl; } else cout << "沒有找到ret1" << endl; BSTreeNode<int, int>* ret2=bst.Find(22); if (ret2) { cout << ret2->_key << ":" << ret2->_value << endl; } else cout << "沒有找到ret2" << endl; bst.Remove(9); bst.Remove(7); bst.Remove(8); bst.InOrder(); bst.Remove(0); bst.Remove(1); bst.Remove(2); bst.Remove(3); bst.Remove(4); bst.Remove(5); bst.Remove(6); bst.Remove(7); bst.Remove(8); bst.Remove(9); bst.InOrder(); } void Test2() { int arr[10] = { 0, 1, 3, 5, 4, 2, 7, 8, 6, 9 }; BSTree<int, int> bst; for (int i = 0; i < sizeof(arr) / sizeof(arr[0]); ++i) { bst.InsertR(arr[i], i); } bst.InOrder(); BSTreeNode<int, int>* ret1 = bst.Find(7); if (ret1) { cout << ret1->_key << ":" << ret1->_value << endl; } else cout << "沒有找到ret1" << endl; BSTreeNode<int, int>* ret2 = bst.Find(12); if (ret2) { cout << ret2->_key << ":" << ret2->_value << endl; } else cout << "沒有找到ret2" << endl; bst.RemoveR(8); bst.RemoveR(7); cout<<bst.RemoveR(9)<<endl; bst.InOrder(); bst.RemoveR(0); bst.RemoveR(1); cout << bst.RemoveR(2) << endl; bst.RemoveR(3); bst.RemoveR(4); bst.RemoveR(5); bst.RemoveR(6); bst.RemoveR(7); cout << bst.RemoveR(8) << endl; bst.RemoveR(9); bst.InOrder(); } int main() { Test1(); Test2(); return 0; }
運行結果:
分享名稱:搜索二叉樹
URL鏈接:http://www.2m8n56k.cn/article6/gpocig.html
成都網站建設公司_創(chuàng)新互聯(lián),為您提供外貿網站建設、軟件開發(fā)、搜索引擎優(yōu)化、品牌網站制作、自適應網站、定制網站
聲明:本網站發(fā)布的內容(圖片、視頻和文字)以用戶投稿、用戶轉載內容為主,如果涉及侵權請盡快告知,我們將會在第一時間刪除。文章觀點不代表本網站立場,如需處理請聯(lián)系客服。電話:028-86922220;郵箱:[email protected]。內容未經允許不得轉載,或轉載時需注明來源: 創(chuàng)新互聯(lián)